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A new theoretical approach is presented, which determines the entrainment laws 
with and without background rotation in a two-layer stratified fluid with one layer 
stirred by turbulent motions. The model gives the entrainment coefficient E as a 
function of the local turbulent Richardson number Ri = g’1/u2, the Rossby number 
Ro = u/fl and the PBclet number Pe = ul/K. The following entrainment laws are 
obtained: (i) without rotation and for a high PBclet number: E ci Ri-a; (ii) without 
rotation and for a low to moderate PBclet number: E ci Pe-fRi-’; (iii) with rotation 
and for a high PBclet number : E oc Ro Ri-’. These entrainment laws are consistent 
with experiments for the three different cases. The model relies to a great extent on 
the spectral distribution of interface oscillations measured in experiments. 
Comparison is made with experiments and with earlier models of entrainment. 

1. Introduction 
Theoretical aspects of mixing a t  a density interface between two superimposed 

miscible fluids when one layer is a t  rest and the other is stirred by turbulent motions 
are considered. The density stratification in the interface is assumed to be strong, 
meaning that the turbulent Richardson number 

is high (Ri + 1) .  The reduced gravity is g’, and u and 1 designate respectively the 
horizontal component of turbulent velocity and the turbulent lengthscale a t  the 
interface. I n  what follows the stirred layer is the lower layer. 

Thcre have been a large number of experimental investigations of turbulent 
entrainment across density interfaces in a non-rotating fluid subjected to turbulence 
when the PBclet number is high (Turner 1973; Thompson & Turner 1975; Hopfinger 
& Toly 1976; E & Hopfinger 1986; Linden 1973; Long 1978; Fernando & Long 1985). 
Except for the work of Long (1978) and Fernando & Long (1985), all these studies 
agree on the following dependence of the entrainment rate on the Richardson 
number : 

where u, is the mean displacement velocity of the interface (‘entrainment velocity ’). 
The constant K varies slightly from one author to  another and from one experiment 
to another. It is in general of O( 1) .  A theoretical justification of the experimental law 
(2) was proposed by Linden (1973). His model, which is supported by a simple 
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experiment, considers the mixing caused by turbulent eddies, modelled by a vortex 
ring impinging perpendicularly on the interface. The distortion of the interface forces 
the eddy to recoil into the turbulent layer, carrying lighter fluid inside the stirred 
fluid during the recoil. A dimensional analysis of this mechanism led Linden to the 
Ri-g law. 

The present paper considers another entrainment mechanism. Mixing is assumed 
to be caused by small turbulent eddies of Richardson number 

of the order of one or less. By mixing the density profile, thcsc eddies convert kinetic 
energy into potential energy, a t  a rate given by their own timescale and a t  a scale 
given by their own lengthscale. The entrainment law is obtained by integration over 
all eddies of Richardson number below 1 .  

This analysis was developed simultaneously with an experimental study (Fleury 
et al. 199l), aimed a t  understanding the effect of rotation on turbulent entrainment. 
The study was motivated by geophysical applications. An entrainment law was 
obtained experimentally in the form 

E = 0.5RoRi-', (3) 

Ro = u/JE being the Rossby number based on the turbulent velocity u and integral 
lengthscale 1. By developing a new approach to understanding the effect of rotation 
on mixing, it appeared that this new theory could easily be generalized to predict the 
entrainment behaviour obtained in non-rotating experiments for high and moderate 
Pdclet number Pe = d / K .  

In  what follows emphasis will be placed on knowledge of the turbulent kinetic 
energy spectrum near the interface. Important theoretical attempts are being made 
at  present by Carruthers and Hunt to estimate these quantities. In an earlier study 
Carruthers & Hunt (1986) considered density profiles with a jump in Brunt-Vaisala 
frequency a t  the interface, but without a density jump. Work is currently in progress 
by these authors on density profiles presenting a density jump across an interface of 
thickness P. Their theoretical analysis focuses on determination of the velocity field 
near the interface. In the present paper thc interest is in mixing, for which the 
structure of turbulence needs to be known. Reference is made to the experimental 
studies by Hannoun, Fernando & List (1988) and Hannoun & List (1988) (without 
rotation) and by Fleury et al. (1990) (with rotation). Their results concerning the 
behaviour of the kinetic energy distribution at the interface are used. These serve to 
establish the entrainment law as well as to justify certain assumptions of the theory. 

The basic principles of the theory are presented in $2.  The results are then applied 
to mixing in a turbulent flow with no rotation ($3). The effect of rotation is 
considered in the model in $4. Finally $5  discusses and compares this theory to earlier 
theoretical models by Linden (1973), Long (1978) and Phillips (1977). 

2. Theoretical foundations 
We consider, as depicted in figure 1 ,  a stratified fluid formed by two layers with 

densities p and p+Ap, separated by an interface of thickness e .  The lower layer is 
subjected to turbulent stirring, produced for example by an oscillating grid. This 
turbulence is assumed to be statistically homogeneous. The turbulent velocity is 
denoted u and the turbulent lengthscale is 1. The depth of the lower layer is h. When 
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FIGURE 1. Schematic diagram of the flow, and notation. 

effects of rotation are considered in $4 of this paper, the rotation is around the z-axis 
parallel to gravity g. 

Since the Richardson Ri = gf1/u2 is high, the fluid mixed a t  the interface is 
entrained into and mixed throughout thc turbulent lower layer, whereas the density 
in the upper layer remains constant. Mixing a t  the interface induces a slow 
displacement of the mean position of the interface. The entrainment velocity, u, = 
dh/dt, and the entrainment coefficient is defined by E = u,/u. 

As previously considered by various authors (Phillips 1977 ; Gibson 1981, among 
others), the physical mechanism producing the mixing of the density profile is 
assumed to be an instability of Kelvin-Helmholtz type. The main consequence of a 
high Richardson number is that eddies of the order of the integral lengthscale 1 are 
unable to mix the density profile. The general criterion for the Kelvin-Helmholtz 
instability is in the form 

Estimating this quantity for the large-scale turbulent eddies, au/az x u/l implies 

because the ratio l / e  of the integral lengthscale and the interface thickness is greater 
than one for all experiments referred to in the present paper. We therefore verify that 
criterion (4) for instability is not satisfied for eddies of size 1. Nevertheless, the 
turbulent flow contains various scales of eddies, and the smaller ones may satisfy 
criterion (4) and mix the fluid. In order to determine the range of eddies that can mix 
the fluid, the local characteristic frequency au/az has to be estimated for each scale 
of eddies and compared using (4) to the Brunt-Viiisala frequency (g’ le) ; .  The relative 
contribution to the mixing of each scale of motion is estimated by using a spectral 
description of the turbulent flow. E,(k) designates the kinetic energy spectral density 
(k is the wavenumber modulus). Two particular frequencies characterize a turbulent 
eddy. The first one is the turnover frequency of this eddy when the observer moves 
with the large-scale motions. We therefore call this frequency the ‘Lagrangian 
frequency ’ : 

W L  x (E,(k)  k ) k  ( 5 )  
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observer seeing an eddy with scale l / k  translated by the large-scale motions: 
The second frequency, called ‘Eulerian frequency’, is that measured by a fixed 

wE x uk.  (6) 

The Eulerian frequency is more representative of the shear produced at the interface 
a t  scale l / k ,  because the interface is sharp and motions are significantly weaker 
above the interface than below. Introducing the Eulerian frequency in criterion (4), 
the size l / k  of eddies contributing to mixing is given by the range 

When mixing proceeds, the mean position of tho interface moves slowly with the 
entrainment velocity u,. The rate of increase of the total potential energy per unit 
volume is 

dE’ 
2 x Apghu, 
dt 

because the interface thickness is assumed to be small compared to the depth of the 
turbulent layer ( e / h  < 1). Turbulent eddies, when mixing the fluid, transform kinetic 
energy into potential energy, so that the rate of potential energy increase may be 
expected to be proportional to the kinetic energy per unit mass available just below 
the interface. The total mixing is the sum of contributions from those turbulent 
eddies contributing to mixing as determined by (7).  Prom a dimensional argument, 
it may be deduced that 

where w(k)  and h ( k )  designate respectively the characteristic frequency and 
lengthscale a t  which the turbulent eddy with wavenumber k mixes the density 
profile. The domain of integration I is given by ( 7 ) .  

It is worth mentioning that the dimensional argument used to establish (9) is quite 
similar to the procedure followed by Linden (1973). In both cases the rate of increase 
is assumed to be proportional to the available turbulent energy multiplied by a 
characteristic lengthscale and divided by a characteristic timescale. However, the 
mechanisms are completely different. Here the mixing is caused by Kelvin- 
Helmholtz instabilities and is therefore a small-scale process, whereas Linden 
associates the mixing directly with the dynamics of large-scale eddies. 

Returning to (9), a mixing-length argument provides a simple estimate of the 
lengthscale h(k) : 

which means that an eddy in contact with the interface cannot mix the fluid on a 
scale larger than its own size. 

It is not, a priori, obvious whether the Eulerian frequency wE or the Lagrangian 
frequency wL gives the relevant timescale of mixing by an eddy with wavenumber k .  
There are arguments in favour of choosing the Eulerian timescale, since this 
frequency was previously chosen to  establish criterion (7)  determining the size of 
eddies contributing to the mixing, and because the Eulerian frequency is more 
appropriate for estimating the real shear at the interface. I n  linear models of the 
Kelvin-Helmholtz instability, the Eulerian frequency actually scales the exponential 

h ( k )  x l / k ,  (10) 
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growth of the instability. The Lagrangian frequency w(k)  = wL(k) (equation (5) )  is 
nevertheless chosen. This choice is motivated by the assumption that exponential 
growth represents only a short period of time at  the beginning of the mixing process. 
After some time, the entrained fluid is transported by the large-scale eddies, and the 
mixing, which is produced by the smaller eddies, continues with the Lagrangian time 
scale l / w L .  

The growth of the potential energy ((8) and (9)) then becomes 

after using ( 5 ) ,  (7 )  and (10). The turbulent kinetic energy spectrum has now to be 
determined, and this is done in the next sections when the cases without and with 
rotation are considered successively. It is worth mentioning here that turbulence is 
almost isotropic a t  the small scales a t  which mixing occurs. I n  non-rotating 
conditions this property is demonstrated by measurements made by Hannoun et al. 
(1988), as we shall see later on. This fact removes any ambiguity surrounding the 
definition of the turbulent kinetic energy spectrum Ek(k)  used in this paper. 

3. Application to non-rotating turbulent flows 
In this section, the entrainment law is determined for two asymptotic cases, 

depending on whether molecular diffusion is efficient (small or moderate Pdclet 
number) or negligible (Pe 9 1). As shown by ( l l ) ,  the dependence of the ratio of the 
interface thickness to the integral lengthscale e l l  on the various non-dimensional 
numbers governing the flow must be determined to deduce the entrainment law. 

Considering first the case of very high-PQclet-number flows, experiments (Crapper 
& Linden 1974: E & Hopfinger 1986; Hannoun & List 1988) have shown that e l l  
does not depend on the Richardson number when this number is sufficiently large 
(Ri > 50). The asymptotic value of e l l  varies considerably from one experiment to  
another. This value, obtained from instantaneous density profiles measured using a 
conductivity probe, is relatively large in the experiments by Crapper & Linden 
( e l l  x 1.5) and E & Hopfinger ( e l l  x 0.24). The more recent technique developed by 
Hannoun & List (1988), using laser-induced fluorescence to  measure instantaneous 
concentration profiles of Rhodamine dye, gave a much smaller asymptotic interface 
thickness ( e l l  x 0.04 for Ri > 50). The latter authors mentioned that this ratio may 
even be overmeasured because of a lack of resolution at high Ri. The discrepancy in 
the asymptotic value of e l l  is not understood. Anyway, it is sufficient in the 
framework of the present model to  assume that e l l  does not depend on Ri for high 
Ri , 

a result verified by all experiments. However, a dependence of e l l  on the Pdclet 
number cannot be excluded as considered by Hannoun & List (1988). 

When the PBclet number is low or moderate, molecular diffusion plays a key role 
a t  the interface by determining its thickness. Molecular diffusion tends to thicken the 
interface according to 

e l l  x const, (12) 

e x ( K t ) ; ,  (13) 

which implies 
de K 

dt e 
-x- 



198 M .  Mory 

This typical velocity of diffusion of the interface decreascs as the interface thickness 
grows. On the other hand, entrainment tends to decrease the interface thickness. We 
consider here the case when the interfacial layer is in equilibrium, that is when the 
increase in the interface thickness due to diffusion is balanced by the decrease due to 
the entrainment. This balance between entrainment and diffusion therefore leads to 

E=U" 1 
x - x -Pe-'. 

u eu e 

Less experimental data on the interface thickness are available when the PBclet 
number is small or moderate than when i t  is very high. Some comparison with the 
results obtained by Crapper & Linden (1974) is made at  the end of the present 
section, after the entrainment law is established. 

The entrainment law is now determined from (1  1 ) .  The closure of this relationship 
follows from (12) or (15), depending on whether the interface is non-diffusive of 
diffusive, and from determination of the turbulent kinetic energy spectrum. 
Reference is made here to the turbulent kinetic energy spectra measured by 
Hannoun et al. (1988) in the vicinity of the interface (figure 8 of their paper). These 
frequency spectra show significant energy transfers a t  the lowest frequencies (largest 
scales) from the velocity component perpendicular to  the interface (spectrum E,) to 
the velocity component parallel to it (spectrum Eu). However, comparison of the 
spectra E,(w) and E,(w) shows that all spectra collapse on almost a single curve for 
frequencies corresponding to the wavenumber range kl 2 Rif, whose slope is 
apparently in good agreement with the classical -5 law. In  the small scale range 
considered (kl  2 (Ri l / e ) f ) ,  turbulence is therefore nearly isotropic. These properties 
mean that the spectral-law distribution may be written in the classical form : 

E,(k) = u21(kl)-:. (16) 
Scaling of the spectrum with u21 is retained bccause the spectra measured by 
Hannoun et al. (1988) show no modification by stratification of the spectral 
distribution in the range defined by (7) .  The spectral distribution (16), derived for a 
non-stratified fluid, is valid near the interface, provided i t  is used in that range. 

A further insight into the spectral kinetic energy distribution at the interface is 
provided by the internal wave spectra measured by Hannoun & List (1988) and, 
more recently, by Fleury et al. (1991). In  what follows, we call these spectra 'interface 
displacement spectra' as it is not obvious that they only account for internal wave 
motions. If [ ( t )  denotes the time fluctuation of the middle of the interface, the 
interface displacement spectrum is 

[ ( w )  being the Fourier transform of [ ( t ) .  The spectral measurements by Hannoun & 
List (1988) and Fleury et al. (1991) are of frequency spectra. These are Eulerian 
spectra because measurements are taken a t  a fixed position (2, y) in the tank. The 
frequency is related to the wavenumber by w = uk, u being the horizontal r.m.s. 
turbulent velocity. ( ) designates the ensemble average. The interface displacement 
spectrum is related to the turbulent kinetic energy spectrum E,(w,z = h)  of the 
velocity component perpendicular to the interface, measured a t  the interface, 
according to  

(18) 
The spectrum E,(w, z = h )  is Eulerian in the horizontal coordinates (x, y )  but it is a 
Lagrangian quantity in the vertical direction since it is obtained at  the position of 

@ ( w )  = <t(4 &w>> (17)  

E,(w, z = h)  = w2@(w). 
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the interface. This spectrum differs in principle from the spectrum E,(w) measured 
by Hannoun et al. (1988), which is an Eulerian spectrum measured by LDA a t  a fixed 
position below the mean position of the interface. However, both quantities do not 
differ much for eddies with lengthscale l / k  such that kl w (Rille):;  a t  least they 
presumably exhibit the same power-law dependence on frequency. Actually, the 
vertical velocity of the interface wi(t) is related to the Eulerian vertical velocity 
component wo(t) a t  the mean position of the interface by 

aw 
az W i ( t )  = wo(t) + C A  ( t ) .  

For an eddy with wavenumber k we estimate aw,/az = O(w, k )  and 5 = O(lh?i-l), 
implying that (wi-wo)/wo = O(k1Ri-’) is a small quantity for eddies of lengthscale 
such that kl w Ri:, when the Richardson number is sufficiently high. Interface 
displacement spectra provide information about the dynamics a t  the interface which 
is complementary to  that obtained from the turbulent kinetic energy spectra (as 
measured by Hannoun et al. 1988). Interface displacement spectra provide an exact 
determination of the kinetic energy spectrum at the interface ( z  = h, see (18)), 
whereas the turbulent kinetic energy spectra determined by Hannoun et al. were 
measured at a position close to the interface, but somewhat below it. On the other 
hand, direct measurement of the turbulent kinetic energy spectra by the latter 
authors gives the only evidence of the isotropy of turbulence in the small-scale range. 
Figure 2 ( a )  shows replots of an interface displacement spectrum @ ( w ) ,  versus 
frequency, measured by Fleury et al. (1991). I n  order to determine accurately the 
best fit of the interface displacement spectrum @(o) with a power law of the form UP, 

two plots of wn@(w)  for the same spectrum @ ( w )  are presented in figure 2 with 
n = 3 and n = y, respectively. The particular value n = is related to  a turbulent 
kinetic energy spectrum varying like k-g (see (18)). The value n = 3 was considered 
by Hannoun & List (1988) in terms of Phillips’ (1977) model. This point is discussed 
in more detail in $5,  as the present analysis disagrees with certain interpretations 
that Hannoun & List made of their spectra. Apparently, the spectrum in figure 2 ( a )  
shows a better fit with a dependence in the form w-g, as the spectrum wY@(u) is 
almost constant in the frequency range extending between the internal wave 
frequency fi = (1/2x) (g’/Z): and the cutoff frequency f, imposed by the measurement 
system. Unfortunately, this frequency range is only half a decade wide. 

When the spectral law (16) is introduced in (1 l) ,  the rate of increase of the total 
potential energy becomes 

(19) 
dE --$ = Apghu, w pu3 I ( / ~ l ) - ~  d(kl), 

kZ> (Ri Z/e)r 

leading finally to  the entrainment law 

The two cases, respectively high and low PBclet number, now need to be examined 
separately. For a non-diffusive interface, l / e  is a constant, independent of the 
Richardson number, (12). Hence 

(21) 
(Ze); 

h 
E x -Ri-t 
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FIGURE 2. Frequency spectra w%D(w) and w3@(w) (plotted in arbitrary units), with @ ( w )  the 
interface displacement frequency spectra ,measured by Fleury et al. (1991). f, = (1/2n) ( g ' / l ) L  2 is ' the 
internal wave frequency, N = (1/2n) ( g ' / e ) s  the Brunt-Vaisala frequency and f, the cutoff frequency 
imposed by the apparatus. (a )  Non-rotating conditions ( @ ( w )  is shown in figure 12 of Fleury et ul.).  
Richardson number range : Ri = 3W34. ( b )  Rotating conditions ( @ ( w )  is shown in figure 13 of Fleury 
et ul.). Ri = 23-36.5 and Ro = 0.18-0.24. Q/n is the rotation frequency. 
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(Z/h is a constant value in the experiments referred to in the present paper). For a 
diffusive interface, the interface thickness is related to the entrainment rate E by 
(15). Combining this equation with (21), one obtains 

E x -Ri-’ (Ri E Pe)-t, (22) 
1 
h 

which then gives E x (krpe-iRi-1. (23) 

The dependence of entrainment on Ri in the form (21) and (23) has been confirmed 
by experiments. For a non-diffusive interfacc, the Ri-; dependence of the entrainment 
rate is supported by the experiments by Thompson & Turner (1975), Hopfinger & 
Toly (1976) and E & Hopfinger (1986). The case of a diffusive interface was 
previously investigated by Turner (1968), who established the Ri-’ law. Though 
various behaviours of the entrainment law versus thc Pdclet number have been 
proposed by different authors (Turner 1968; Hopfinger & Toly 1976), the dependence 
on the PBclet number has not been determined experimentally. It is worth 
mentioning that the entrainment law (23) obtained for diffusive conditions implies 
the following dependence for the interface thickness : 

The increase of the interface thickness with increasing Richardson number is a 
remarkable result since the opposite trend is observed when the PBclet number is 
very high (Hannoun & List 1988; E & Hopfinger 1986). Crapper & Linden (1974) 
actually observed a tendency of the interface thickness to  increase with increasing 
Richardson number for moderate PBclet number (Pe = 155 in figure 4 of their paper), 
though their data did not permit a quantitative determination of this dependence. 

4. Application to rotating turbulent flows 
The rate of increase of the potential energy is still given by (11) .  When a mean 

rotation is superimposed, its effect on the turbulent kinetic cnergy spectrum E,(k) a t  
the interface and on the criterion for instability, (4), (which determines the domain 
of integration) needs to be determined in more detail. 

Unfortunately, there is no turbulent kinetic energy spectrum available in rotating 
conditions similar to the spectra measured by Hannoun et al. (1988) in the non- 
rotating case. Nevertheless, interface displacement spectra @ ( w )  have been measured 
in various rotating conditions by Fleury et al. (1991), and compared by them to 
interface displacement spectra measured in the absence of rotation. This comparison 
reveals several important features. In the experiments carried out by Flcury et al. the 
internal wave frequency ( g ’ / l ) i  and the Coriolis frequency f are of thc same order 
of magnitude. On the one hand, the interface displacement spectra obtained in 
rotating conditions show the emergence of important oscillations of the interface a t  
frequencies of the order of magnitude of the turbulence frequency u/l, which is much 
lower than (g’ / l ) i  and f. Oscillations a t  these low frequencies are one order of 
magnitude weaker in non-rotating conditions. In the framework of the present 
theory, the large-scale motions associated with the low-frequency oscillations do not 
take part in the mixing. Fleury et al. (1991) relate their existence to inertial waves 



202 M. Mory 

that transmit kinetic energy across the interface into the non-mixed layer. On the 
other hand, the interface displacement spectrum is not modified by rotation for 
frequencies above (g'/Z)a and f .  Modifications of the interface displacement spectrum 
caused by rotation only affect frequencies smaller than the frequency of rotation and 
the internal wave frequency (g'/Z):. The definition of the various characteristic 
frequencies of the flow and a detailed discussion of the shape of the interface 
displacement spectra in the various frequency ranges arc contained in $6 of Fleury 
et al. (1991). In the present paper we focus on the high-frequency range corresponding 
to eddies active in the mixing process; rotation has no effect on interface 
displacements at these scales. Figure 2 ( b )  shows an interface displacement spectrum 
@ ( w )  measured in rotating conditions. Actually the spectra w3@(w)  and wy@(w)  are 
plotted to distinguish which of the power laws op3 and w-y is more representative 
of the measured spectra. The best agreement is @ ( w )  OC w d  because the spectrum 
w?@(w) is almost constant over half a decade for (1/2x) (g'/Z)i < w and f/x < w < f ,  
( f ,  is the cutoff frequency imposed by the measurement technique). Equation (18) 
relates the interface displacement spectrum to the turbulent kinetic energy spectrum 
Ew(w,z  = h)  at  the interface of the velocity component perpendicular to it. The 
turbulent kinetic energy spectrum is not modified by rotation for f / x  < w < f ,  and 
(l/Zn) (g'/Z)t < o. The spectra are Eulerian in the (2, y)-coordinates, so that the 
relationship bctween frequency and wavenumber is linear (w = I&) .  In the range 
defined abovc, the turbulence kinetic energy spectrum is expressed versus 
wavenumber as 

E,(k)  = u2l(kl)-S, (25 )  

provided turbulence remains isotropic in this frequenry range. This property cannot 
be proved by the experimental results available, but is likely to be true. It is 
physically reasonable that rotation should not modify turbulence at  frequencies 
higher than the rotation frequency. This property is verified by the interface 
displacement spectra. There is no reason why turbulence should become non- 
isotropic in this frequency rangc, whereas it is isotropic in this range for non-rotating 
conditions. 

Turning our attention to the stability criterion defining the integration domain in 
( l l ) ,  it is to be expected that this criterion should hold when the Eulerian frequency 
wE NN uk (equation (6)) is higher than the Coriolis frequency f for all eddies 
contributing to the mixing of the density profile. This implies that the entrainment 
law obtained without rotation, (21), (non-diffusive interface) still applies for a 
rotating system when 

implying Ri;Ro(:r 2 1.  (27) 

When the reverse inequality is satisfied, in contrast, i t  is to  be expected that turbulent 
eddies with wavenumbers in the range 

should be affected by rotation, because the corresponding frequencies are lower than 
the rotation frequency f /n .  It is well known that rotation usually acts as a stabilizing 
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effect. This property is satisfied by the Kelvin-Helmholtz instability (Chandrasekhar 
1961 ; Huppert 1968). Assuming that rotation will cause maximum stabilization, i t  
will totally inhibit mixing by turbulent eddies in the range defined by (28), whereas 
these eddies would mix the density profile if rotation were eliminated. In  spite of its 
crudeness, this assumption is consistent with the general trend of rotation stabilizing 
instabilities. It will be verified a posteriori that such a strong assumption leads to an 
entrainment law in agreement with the experimental results by Fleury et al. (1991). 

Under the condition 

the rate of increase of the potential energy (11) is modified to 

where only the integration range has been changed to account for the stabilizing 
effect of rotation. With the spectral energy distribution (25), one obtains after 
integration 

leading finally to the entrainment law 

Apghu, x pu3Ro,  (31) 

(32) 

The dependence of the entrainment rate on the Rossby and Richardson numbers 

1 
h 

E x -RoRi-'. 

has actually been demonstrated in experiments by Fleury et al. (1991). 

5. Discussion 
In  the present paper three entrainment laws have been established theoretically 

for mixing across an interface of finite thickness by a turbulcnt flow having no mean 
shear. These three laws are valid for well-defined asymptotic regimes. The results are 
summarized in table 1. This table also refers to the experiments, which confirm the 
entrainment laws obtained theoretically. 

In  rotating conditions, the entrainment law E x (l lh) R0Ri-l is clearly observed in 
experiments by Fleury et al. (1991). Unfortunately, sufficiently large Richardson 
numbers could not be achieved in these experiments to verify whether the non- 
rotating entrainment law E !z (le/h2)iRi-S is recovered for high values of the 
parameter Rii Ro. Data obtained in this range tend to confirm this behaviour, but are 
to  scarce to  demonstrate any non-dimensional entrainment law. However, a 
behaviour that differed from that predicted by the model would be surprising, as it 
would imply that rotation modifies the structure of turbulence even when the Rossby 
number is asymptotically large. We regard the prediction of two regimes depending 
on the value of RiiRo as an additional advantage of the model. 

Two models of entrainment, not accounting for the effect of rotation, have been 
proposed by Linden (1973) : E a Ri-g and Long (1978) : E cc Ri-a for a non-diffusive 
interface. The entrainment law proposed by Linden (without rotation) is confirmed, 
but the differences between the present approach and Linden's need to be 
emphasized. Linden associates the mixing with large-scale eddies impinging on the 
interface and carrying the non-turbulent fluid into the mixed layer during recoil. The 
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Entrainment law Experimental 
Type of interface Domain of validity E = up/u  references 

Without rotation 
Thompson & Turner 

Hopfinger & Toly 

E & Hopfinger (1986) 

(1975) 

( 1976) 

Non-diffusive Ri P 1 li: a (Ze)i/h Ri-t 
Pe = d / K  f 02 

Diffusive PP moderate Ri P 1 E a ( l /h )%P~-+Ki - '  Turner (1968) 

With rotation 
Non-diffusive Ri F 1 E a (1e);lhRi-l pu'o effect of rotation 

Pe = u l / K  +- co ( I l e ) ;  Ro Ri: 1 

( 1 l e ) ~ t l o  Rib < 1 
Ri P 1 I/: a l l h  Ho Ri-I 

TABLE 1. Entrainment laws 

Fleury et al. (1991) 

estimate of the potential energy increase made here, (9), is dimensionally similar to 
Linden's, but the mixing is a small-scale process whereas mixing is related by Linden 
to the dynamics of large-scale eddies. The estimates of the available kinetic energy 
and of the time- and lengthscales are therefore very different in the two models. 
Moreover, Linden considers the interaction of a single large-scale eddy with the 
interface. When such a model is applied to fully developed turbulence at  thc 
interface, the mixing events of the type described by Linden presumably arisc 
intcrmittently. In Linden's model, the arrival timescale of eddies a t  the interface is 
the turbulent turnover time, whereas the typical duration of the interaction of the 
eddy with thc interface is the timescale of long internal waves. Intermittency is 
accounted by the fact that the latter timescale is much smaller than the former. The 
model proposed by Long (1978) presents some similarities with the new approach 
developed here. Mixing is considered by Long as being caused by the breaking of 
internal waves at  the interface. His model assumes, as does the present one, that 
mixing is a small-scale process governed by an instability whose criterion is of the 
form given by (4). One diffcrence is that intermittency is necessary in Long's model, 
while it is neglected here. A disadvantage of Long's modcl is its complexity. It is 
difficult to understand all the steps of his analysis. Some results seem doubtful. like 
the ratio of the r.m.s. velocity component perpendicular to the interface to the r.m.s. 
velocity component parallel to the interface in the vicinity of the latter. Long's 
model predicts w/u cc Ri-a, whereas the measurements by Hannoun & List (1988), 
confirmed by Fleury (1988), show a w/u oc Ri-1 dependence. 

The simplicity of the present approach and its ability to predict correctly the 
entrainment laws for three different regimes argue in its favour. A key point is the 
use of two different timescales: the criterion for instability is expressed using the 
Eulerian timescale, and that for the mixing itself by the Lagrangian timescale (see 
8 2) .  Introducing two different frequencies in our dimensional scaling, (9), obviously 
increases the number of possible forms of entrainment laws that may be derived. 
Assuming that the frequency w ( k )  in the integrand of (9) is in the form uk/(kZ)p 
whereas the frequency defining the integral limit is uk/(kZ)', it is quite simple to 
obtain the following entrainment laws : 

( i )  E ccRi-(lfs) without rotation and for Pe % 1 ;  
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(ii) E a Ri-l Pe-SI(S+l) without rotation and for small or moderate Pdclet number ; 
(iii) E a Ri-lRo2’ with rotation and for Pe >> 1 .  

The number s is s = (p+3)/2(1 - r ) .  These simple relations? point out how important 
the dependence of entrainment laws on the PBclet and Rossby numbers is for a test 
of the theory. The Rip: law for a non-diffusive interface without rotation and the Ro 
dependence in the presence of rotation (non-diffusive interface) are consistent, 
implying that p + r  = g. The predicted P e  dependence without rotation when the 
interface is diffusive is therefore like Pe-i. Unfortunately, the Pe dependence has not 
been measured. Obviously, many couples (p, r )  verify the condition p + r = +, among 
which are the values ( 5 , O )  used in the present model. Introducing the Eulerian 
frequency inside the integrand and the Lagrangian frequency in the integral limit 
would give the same results. Nevertheless not any values for p and r can be accepted 
because the defined frequencies must have physical meaning, as the Eulerian and 
Lagrangian frequencies have. A linear model would involve using the Eulerian 
frequency only. It is more consistent to introduce the Eulerian frequency in the 
integral limit as linear stability should determine the range of eddies that will be able 
to mix. Using the Lagrangian frequency as a timescale for mixing implies that  
mixing is a nonlinear process. A second nonlinear feature of the model is the 
incorporation of the turbulent kinetic energy spectrum, which played no role in the 
models proposed by Linden and Long. It seems physically reasonable that the 
turbulent kinetic energy distribution should enter in some way into the entrainment 
law. Owing to the decay of the kinetic energy spectrum, integration over the 
wavenumber range of eddies contributing to mixing leads to a very simple result. 

The present work has been largely influenced by the very important experimental 
results obtained by Hannoun et aZ. (1988) and by Hannoun & List (1988). However, 
Hannoun & List’s interpretation of their internal wave spectra in terms of Phillips’ 
(1977) theory of mixing seems incorrect. This theory predicts that the interface 
displacement spectrum will correspond to  the marginal state of stability for all 
internal waves. It then leads to  an internal wave decay in the form 

@ ( w )  a we3. (33) 
The interface displacement spectrum is related by E,(w) a w2@(w) ,  (18), to the 
turbulent kinetic energy spectrum E,(w, z = h) of the velocity component per- 
pendicular to the interface. Energy spectra, measured by Hannoun et al. (1988), show 
a dependence in the form EJw)  a w-9 (even in the close neighbourhood of the 
interface) that  contradicts the @ ( w )  K w-3 dependence used by Hannoun & List 
( 1988) to interpret their interface displacement spectra. The turbulent kinetic energy 
spectra measured by Hannoun et al. (E,(w) cc w-i)  imply an interface displacement 
spectrum in the form @ ( w )  K w-7. It is in fact difficult to distinguish whether the 
intcrface displacement spectra obtained by Hannoun & List (figure 13) decay like 
w-T or wP3. The consistency between turbulent energy spectra and interface 
displacement spectra would indicate giving preference to @ ( w )  K w-y,  in agreement 
with the results of Fleury et al. (1991). An important physical consequence is that  
interface oscillations are not in a state of marginal stability as proposed by Phillips 
(1977). Instead, their distribution is imposed by the distribution of energy below the 
interface. One reason why Phillip’s ideas seem inapplicable in the experiments 
referred to in the present paper is that  the ratio of the Brunt-Vaisala frequency 
N ,  = (g’/e)i to the large-scale internal wave frequency n, = (g’/Z)i is usually low. 
Fleury et al. (1991) measuced neither the interface thickness nor the integral 

t We are indebted to one of the referees for this argument. 

11 

11 
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lengthscale of turbulence. Using the measurements of the interface thickness 
obtained by E & Hopfinger (1986) and the integral lengthscales measured by Mory 
& Hopfinger (1985) they estimated the ratio Nm/n,  to be of the order of 2 to 3. The 
condition Nm/n, 9 1 is also not be reached in Hannoun & List’s (1988) experiments. 
For an overall Richardson numbers in the 24-100 range, figure 10 of their paper 
indicates a ratio of Nm/na in the range 2.8-5.5. Considering all the points mentioned 
above, we therefore believe that the data by Hannoun & List are more satisfactorily 
interpreted by the present model than by Phillips’ model. Nevertheless, the 
determination of the interface thickness is still a subject of controversy. Interface 
thicknesses measured by E & Hopfinger (1986) and by Hannoun & List (1988) are 
consistent a t  Richardson numbers of the order of 20-30, but much smaller in the 
experiments by Hannoun & List than in E & Hopfingcr’s experiments when the 
Richardson number is higher ( e l l  = 0.03 as compared to e/E = 0.22 for Ri = 100). 
Moreover Hannoun & List believed that their measurements were overestimated 
from a lack of resolution of their laser-induced fluorescence technique. Effects of 
averaging concentration profiles measured by a conductivity probe, as shown by 
Hannoun & List in their figure 2 cannot explain the thicker interface thickness 
obtained by E & Hopfinger. The explanation of this discrepancy remains an open 
question. However, as mentioned before, the only hypothesis used in our model is 
that e l l  is independent of the Richardson number for sufficiently large values. It can 
be small or of the order of one. 

The role of dissipation must finally be considered to justify the assumption that the 
small-scale eddies active in the mixing process kl > (Ril /e) i  x Rif are sufficiently 
large compared to the Kolmogorov lengthscale. The wavenumber associated with 
the Kolmogorov lengthscale is k ,  1 = (ul/v)!. The condition required is therefore 

Rii < (ul/v)f. (34) 

This condition is satisfied in Fleury et aE.’s (1991) experiments. Without rotation 
(figure 2 a )  Rif x 6-9 and (ul/v)f x 144, while Rii x 5 and ( U Z / V ) ~  4 x 112 with rotation 
(figure 2 b ) .  The factor of ten between the size of eddies considered for mixing and the 
Kolmogorov lengthscale cannot, however, be considered large. Studies by Gibson 
(1981) and Stillinger, Helland & Van Atta (1983) have shown that dissipation is 
efficient up to a lengthscale about ten times larger than the Kolmogorov lengthscale. 
Neverthcless, these authors considered flow with a linear mean density profile in 
which turbulence is produced by a mean flow passing through a grid perpendicular 
to the stratification planes. It is by no means obvious that the constant of 
proportionality found in this configuration is the same in the experiments with two- 
layer stratification where turbulence is produced by the oscillation of a grid parallel 
to the stratification planes. The observation by Fleury et al. and by Hannoun & List 
of power-law decays of the interface displacement spectra in the range considered for 
mixing indicates that eddies are presumably inertial, though the Reynolds number 
is not as high as might be desired. 

I am indebted to M. Fleury for kindly providing the interface oscillation spectra 
reproduced here from his thesis. P. Klein is also acknowledged for particularly 
helpful discussions. This work was supported by the Programme Atmosphere 
MBtkorologique (INSU-CNRS), contract 89-3620. 
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